You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
lavos/cap3/ex6.go

104 lines
3.4 KiB

package cap3
// Ex6Output 例六的带输出结果
func Ex6Output(num int, callback func(nums []int)) {
Ex6RecursionOutput(num, callback)
}
// Ex6NoneOutput 例六的不带输出结果版本,只求数量
func Ex6NoneOutput(num int, algoType AlgoType, callback func(nums []int)) int {
switch algoType {
case AlgoTypeRecursion:
return Ex6Recursion(num)
default:
return Ex6NoneRecursion(num)
}
}
// Ex6Recursion 整数划分,递归写法,只计算结果,但对算法经过调整以适合输出
func Ex6Recursion(num int) int {
count := 0
var divider func(num, m int)
divider = func(num, m int) {
// num == 0 来源会有两种:递归中num==m,以及传入的num本身就是0,此时可以作为一个划分
if num == 0 {
count++
return
}
// 最大划分大小m逐级-1求划分数
if m > 1 {
divider(num, m-1)
}
// m <= num,对剩余未加的数进行划分
if m <= num {
divider(num-m, m)
}
}
divider(num, num)
return count
}
// Ex6RecursionOutput 整数划分,由上面的递归写法修改而来,可求划分情况,对算法经过调整以适合输出
func Ex6RecursionOutput(num int, callback func(dividedNums []int)) {
var divider func(num, m int, dividedNums []int, callback func(dividedNums []int))
divider = func(num, m int, dividedNums []int, callback func(dividedNums []int)) {
// num==0时,当前已划分完毕,回调输出
if num == 0 {
callback(dividedNums)
return
}
// 最大划分大小m逐级-1求划分数
if m > 1 {
divider(num, m-1, dividedNums, callback)
}
if m <= num {
// m <= num,对剩余未加的数进行划分,当前的m已经是划分中的一个成员,将其添加进dividedNums中
divider(num-m, m, append(dividedNums, m), callback)
}
}
divider(num, num, make([]int, 0, num), callback)
}
// Ex6NoneRecursion 整数划分,非递归写法,由递归法改写而来,模拟递归过程
func Ex6NoneRecursion(num int) int {
divider := func(num, divideMax int) int {
// 初始化
result := make([][]int, num+1)
for i := 0; i < num+1; i++ {
result[i] = make([]int, num+1)
}
for i := 1; i <= num; i++ {
result[0][i] = 1
}
// i从1开始到num进行划分计算,
// 里层j从1开始到m(最大划分大小)开始计算子问题的划分
// 从1开始,自底向上计算
// 此处为非递归写法,当前的结果依赖上一个结果,因此需要先计算上一个结果,
// 因此整个问题过程需要从最小的问题开始计算
divideMax = min(num, divideMax)
for n := 1; n <= num; n++ {
for m := 1; m <= divideMax; m++ {
if n <= m {
// 对应 Q(n,n) = 1 + Q(n, n-1) 的情况
// n < m (n < m) 时均看作i == m (n == m)
result[n][m] = 1 + result[n][n-1]
} else {
// 对应 Q(n,m) = Q(n, m-1) + Q(n-m, m) 的情况
result[n][m] = result[n][m-1] + result[n-m][m]
}
}
}
return result[num][divideMax]
}
return divider(num, num)
}