parent
9ca75884fc
commit
14c8770633
@ -0,0 +1,35 @@ |
|||||||
|
n = 8 |
||||||
|
|
||||||
|
def generateBoard(): |
||||||
|
board = list() |
||||||
|
for i in range(n): |
||||||
|
row[queens[i]] = "Q" |
||||||
|
board.append("".join(row)) |
||||||
|
row[queens[i]] = "." |
||||||
|
return board |
||||||
|
|
||||||
|
def backtrack(row: int): |
||||||
|
if row == n: |
||||||
|
board = generateBoard() |
||||||
|
solutions.append(board) |
||||||
|
else: |
||||||
|
for i in range(n): |
||||||
|
if i in columns or row - i in diagonal1 or row + i in diagonal2: |
||||||
|
continue |
||||||
|
queens[row] = i |
||||||
|
columns.add(i) |
||||||
|
diagonal1.add(row - i) |
||||||
|
diagonal2.add(row + i) |
||||||
|
backtrack(row + 1) |
||||||
|
columns.remove(i) |
||||||
|
diagonal1.remove(row - i) |
||||||
|
diagonal2.remove(row + i) |
||||||
|
|
||||||
|
solutions = list() |
||||||
|
queens = [-1] * n |
||||||
|
columns = set() |
||||||
|
diagonal1 = set() |
||||||
|
diagonal2 = set() |
||||||
|
row = ["."] * n |
||||||
|
backtrack(0) |
||||||
|
print(solutions) |
@ -0,0 +1,49 @@ |
|||||||
|
# work1. 01背包问题 |
||||||
|
# 设 dp[i][w] 表示在背包容量为 w 时,前 i 个物品能够达到的最大总价值。 |
||||||
|
# 状态转移方程: |
||||||
|
# 对于第 i 个物品,存在两种情况: |
||||||
|
# 如果第 i 个物品的重量大于当前背包容量 w,则无法放入背包,此时 dp[i][w] 等于 dp[i-1][w],即不放入该物品。 |
||||||
|
# 如果第 i 个物品的重量小于等于当前背包容量 w,则考虑放入或不放入背包两种情况,取其中价值更大的情况。 |
||||||
|
# 如果放入第 i 个物品,则总价值为 values[i] + dp[i-1][w-weights[i]]。 |
||||||
|
# 如果不放入第 i 个物品,则总价值为 dp[i-1][w]。 |
||||||
|
# 综合考虑以上两种情况,dp[i][w] 的值为这两种情况中的较大值。 |
||||||
|
# 初始化: |
||||||
|
# 当没有物品可选时,背包能够达到的最大总价值为0,即 dp[0][w] = 0,其中 w 取值为0到背包容量 capacity。 |
||||||
|
# 填充数组: |
||||||
|
# 使用两层循环填充 dp 数组,外层循环遍历物品,内层循环遍历背包容量,根据状态转移方程更新 dp[i][w] 的值。 |
||||||
|
# 回溯: |
||||||
|
# 根据 dp 数组中存储的最优解,找出放入的是哪些物品。 |
||||||
|
# 返回结果: |
||||||
|
def knapsack(weights: list[int], values: list[int], capacity: int) -> int: |
||||||
|
n = len(weights) |
||||||
|
# 创建一个二维数组来存储子问题的解 |
||||||
|
dp = [[0] * (capacity + 1) for _ in range(n + 1)] |
||||||
|
|
||||||
|
# 填充dp数组 |
||||||
|
for i in range(1, n + 1): |
||||||
|
for w in range(1, capacity + 1): |
||||||
|
# 如果当前物品的重量大于背包容量,则不能放入背包 |
||||||
|
if weights[i - 1] > w: |
||||||
|
dp[i][w] = dp[i - 1][w] |
||||||
|
else: |
||||||
|
# 考虑放入或不放入当前物品,选择其中价值更大的方案 |
||||||
|
dp[i][w] = max(dp[i - 1][w], values[i - 1] + dp[i - 1][w - weights[i - 1]]) |
||||||
|
|
||||||
|
# 找出放入背包的物品 |
||||||
|
selectedItems = [] |
||||||
|
i, w = n, capacity |
||||||
|
while i > 0 and w > 0: |
||||||
|
if dp[i][w] != dp[i - 1][w]: |
||||||
|
selectedItems.append(i - 1) |
||||||
|
w -= weights[i - 1] |
||||||
|
i -= 1 |
||||||
|
|
||||||
|
return dp[n][capacity], selectedItems |
||||||
|
|
||||||
|
# 测试 |
||||||
|
weights = [10, 20, 30, 40, 50] |
||||||
|
values = [50, 120, 150, 210, 240] |
||||||
|
capacity = 50 |
||||||
|
max_value, selected_items = knapsack(weights, values, capacity) |
||||||
|
print("最大价值:", max_value) |
||||||
|
print("选择的物品索引:", selected_items) |
@ -0,0 +1,27 @@ |
|||||||
|
# work12 |
||||||
|
# 有一个由数字1,2,…,9组成的数字串,长度不超过200, |
||||||
|
# 问如何将M(1≤M≤20)个加号插入这个数字串中,使得所形成的算法表达式的值最小。 |
||||||
|
|
||||||
|
def get_num(nums: list[int]) -> int: |
||||||
|
result = 0 |
||||||
|
for num in list: |
||||||
|
result = result*10 + num |
||||||
|
return result |
||||||
|
|
||||||
|
dp = [] |
||||||
|
|
||||||
|
def solve(nums: list, p: int, x: int) -> int: |
||||||
|
if dp[p][x] != -1: |
||||||
|
return dp[p][x] |
||||||
|
|
||||||
|
if x == 0: |
||||||
|
dp[p][0] = get_num(nums[0,p]) |
||||||
|
return dp[p][0] |
||||||
|
|
||||||
|
for i in range(x, p-1, -1): |
||||||
|
dp[p][x] = min(dp[p][x], solve(i, x-1)+get_num(nums[i:p])) |
||||||
|
|
||||||
|
return dp[p][x] |
||||||
|
|
||||||
|
result = solve([7,9,8,4,6], 5, 20) |
||||||
|
print(result) |
@ -0,0 +1,19 @@ |
|||||||
|
# work4 求最大字字段和(同例15的解法,此处为python版本写法) |
||||||
|
# o(n)时间复杂度,o(1)空间。 |
||||||
|
# 一路扫描,currMaxSum为当前位置为止的最大和,当到下一个位置时,判断当前数字num加上currMaxSum是否会导致比当前num还小, |
||||||
|
# 如果当前数字num加上currMaxSum是否会导致比当前num还小,则说明最大的和不应从前面开始,而是*至少*应当从当前的数字开始 |
||||||
|
# 下一步比较结果与当前的最大和哪个大,取更大的作为结果 |
||||||
|
def findMaxSum(nums: list[int]) -> int: |
||||||
|
result = nums[0] |
||||||
|
currMaxSum = nums[0] |
||||||
|
for i in range(1, len(nums)): |
||||||
|
num = nums[i] |
||||||
|
currMaxSum = max(currMaxSum+num, num) |
||||||
|
result = max(result, currMaxSum) |
||||||
|
|
||||||
|
return result |
||||||
|
|
||||||
|
# test |
||||||
|
nums = [-2, 11, -4, -9, 13, -5, 7, -3] |
||||||
|
result = findMaxSum(nums) |
||||||
|
print("最大子段和:", result) |
@ -0,0 +1,50 @@ |
|||||||
|
# work5 八皇后问题 |
||||||
|
# 在8乘8的国际象棋棋盘上,放8个皇后,皇后可以吃掉与之同行同列以及同一对角线上的其他皇后。 |
||||||
|
# 为让她们共存,找出所有放置方法。 |
||||||
|
|
||||||
|
n = 4 |
||||||
|
|
||||||
|
queens = [-1]*n |
||||||
|
used_columns = set() |
||||||
|
used_left_diagonal = set() |
||||||
|
used_right_diagonal = set() |
||||||
|
|
||||||
|
def can_put_queen(row, col): |
||||||
|
return (col not in used_columns) and (row-col not in used_right_diagonal) and (row+col not in used_left_diagonal) |
||||||
|
|
||||||
|
def put_queen(row, col): |
||||||
|
queens.append((row, col)) |
||||||
|
used_columns.add(col) |
||||||
|
used_right_diagonal.add(row-col) |
||||||
|
used_left_diagonal.add(row+col) |
||||||
|
|
||||||
|
def remove_queen(row, col): |
||||||
|
queens.remove((row, col)) |
||||||
|
used_columns.remove(col) |
||||||
|
used_right_diagonal.remove(row-col) |
||||||
|
used_left_diagonal.remove(row+col) |
||||||
|
|
||||||
|
result = list() |
||||||
|
|
||||||
|
def queen(row: int) -> list[list[str]]: |
||||||
|
if row == n: |
||||||
|
rowText = ["."] * n |
||||||
|
board = list() |
||||||
|
for i in range(n): |
||||||
|
rowText[queens[i]] = "Q" |
||||||
|
board.append("".join(rowText)) |
||||||
|
rowText[queens[i]] = "." |
||||||
|
result.append(board) |
||||||
|
for col in range(n): |
||||||
|
if not can_put_queen(row, col): |
||||||
|
continue |
||||||
|
queens[row] = col |
||||||
|
put_queen(row, col) |
||||||
|
queen(row+1) |
||||||
|
remove_queen(row, col) |
||||||
|
|
||||||
|
queen(0) |
||||||
|
for board in result: |
||||||
|
for row in board: |
||||||
|
print(row) |
||||||
|
print("------------") |
Loading…
Reference in new issue